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ABSTRACT *

The motion of a two dimensional bubble rising at a constant velocity in

an unbounded fluid is solved by series truncation. It is assumed there is a

wake of stagnant liquid extending to infinity below the bubble. Roth the

effects of gravity g and surface tension T are taken into account. It is

shown that the problem is characterized by a continuum of solutions for T = 0 -

and by a discrete set of solutions when T > 0. In addition a unique solution ,-

is obtained in the limit as the surface tension approaches zero. The .-

corresponding profile of the bubble is found to be in good agreement with

experimental data.
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SIGNIFICANCE AND EXPLANATION

Recent numerical computations on nonlinear free surface flow problems

(Vanden-Broeck3'4 '5) have uncovered an unexpected effect of surface tension.

It has been found that some problems are characterized by a continuum of

solutions when surface tension is neglected and by a discrete set of solutions N

when surface tension is taken into account.

In the present paper we describe-another, example of such flows. We

consider the motion of a two-dimensional bubble rising at a constant velocity

in an unbounded fluid. It is assumed there is a wake of stagnant liquid

extending to infinity below the bubble. Both the effects of gravity and

surface tension are taken into account. It is found that this problem is also

characterized by a continuum of solutions when surface tension is neglected ...

and by a discrete set of solutions when surface tension is taken into

account. Moreover it is shown that a unique solution is obtained in the limit

as the surface tension tends to zero. The corresponding profile of the bubble

is found to be in good agreement with experimental data.

'p

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A FREE STREAMLINE MODEL FOR A RISING BUBBLE

Jean-Marc Vanden-Broeck

1. Introduction

We consider d bubble rising at a constant velocity U in an unbounded

inviscid fluid. We take a frame of reference moving with the bubble and we

assume there is a wake of stagnant liquid extending to infinity below the bubble

(see Fig. 1). .:

As we shall see the problem is characterized by the Froude number

F - U/(gD)1 / 2  (1)

and the Weber number
2U O-D (2)
T

Here g is the acceleration of gravity, T the surface tension, p the

density of the liquid and D the width of the bubble (i.e. the distance between

the separation points S and S').

In this paper we present numerical evidence that for a = (i.e. T 0)

there is a solution for each value of 0 < F < Fc where Fc 0.9. However,

for each value of a ' there exists only a countably infinite number of

solutions. Each of these solutions corresponds to a different value of F. As

* Ca tends to infinity, all these solutions approach a unique limiting solution

characterized by F = F 0.51. The corresponding profile of the bubble is

found to be in good agreement with Collins'1 experimental data.

The present results are similar to those obtained by McLean and Saffman
2

and Vanden-Broeck3 for the viscous flow in a Hele-Shaw cell and by Vanden-

Broeck4'5'6 for the flow past a bubble in a tube. All three problems are

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the
National Science Foundation under Grant No. MCS-8001960.
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Figure 1: Sketch of the flow and of the coordinates. The .:.-

solid line corresponds to the bubble profile and , .-
the broken lines to the wake profile. :::::
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characterized by a continuum of solutions for T -0 and a discrete set of

solutions for T > 0. "- ".;

The problem is formulated in Section 2. The numerical procedure is '

presented in Section 3 and the results are discussed in Section 4 and 5.

2. Formulation .

Let us consider the steady two-dimensional potential flow of an inviscid

incompressible fluid past a bubble (see Fig. 1). The constant pressure in the

bubble is denoted by Pb. We introduce Cartesian coordinates with the origin at

the top of the bubble and we assume that the bubble is symmetric about the x- '.

axis. Gravity acts in the positive x-direction.

We approximate the wake behind the bubble by a free streamline model.

Therefore the velocity is equal to U on the surfaces SJ and S'J' of the

wake. Inside the wake the fluid is at rest and the pressure is hydrostatic. ..

We define dimensionless variables by taking U as the unit velocity and D

as the unit length. We introduce the potential function *b and the stream

function *b. The constant b is chosen such that I - 1 at the separation

points S and S'. Without loss of generality we choose 4 - 0 at x y = 0

and 4 - 0 on the surface of the bubble and of the wake.

We denote the complex velocity by u - iv and we define the function

T - ie by the relation

u -iv e • (3)

We shall seek T - i8 as an analytic function of f = * + i* in the half plane

( 0. The complex potential plane is sketched in Figure 2. At infinity we

require the velocity to be unity in the x-direction so that T - i vanishes at

infinity in view of (3).

On the surface of the bubble the Bernoulli equation and the pressure jump

due to surface tension yield

-3-
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! 2 T Pq -gx+--K=B+ - on SAS' , (4)SPp

W P b Tr -- K on SES' • (5)p p p

Here q is the flow speed, K the curvature of the bubble surface counted

positive when the bubble is on the concave side of the surface, B the

Bernoulli constant and Pw the hydrostatic pressure in the wake. In -'.

dimensionless variables (4) becomes

e - 2 - T 2B = O, 0 < < 6)
.2 x2'F U

Here F and a are the Froude and Weber number defined by (1) and (2)

respectively.

On the surface SJ and S'J' of the wake, the velocity is equal to U.

In dimensionless variables this yields

T 0, $ 0, * > 1 ( (7)

It is convenient to eliminate y, Pb and B from (6) by differentiating

(6) with respect to *. Using the relation

Lx + i ?-x e Ti ''''1- e - iB(8) .. ".

at at u - iv

we obtain

e2 e coo( 0, 0, 0 < < •

At the top of the bubble, the velocity is equal to zero and the profile of

the free surface is tangent to the x-axis. This yields the conditions

T =0 at * -, -0 (10)

0 at 0(

Finally the symmetry of the problem implies

0 - 0, € =0, 1 < 0 (12)

This completes the formulation of the problem of determining the function

T- ie and the constant b. For ech value of a and F, T - iR must be

-5-
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analytic in the half-plane 4 ( 0 and satisfy the boundary conditions (7),

(9)-(12). This system of equations is solved in the next section. Once the

function T - i8 is known, the shape of the upper suface SAS' of the bubble

is obtained by integrating numerically (8) on 4 0 from 0 0 to * = 1.

The Bernoulli equation and the continuity of the pressure across the

surface SJ and S'J' of the wake yield an expression for P inside the wake:

pP 2w U
B + gx 2(13)

Upon substituting (13) into (5) we obtain a simple second order differential

equation for the shape of the lower surface SES' of the bubble. Two boundary

conditions for this equation are obtained by imposing the continuity of the

bubble profile at S and S'. In the particular case a = (i.e. T = 0)

0,e lower surface of the bubble is simply a straight line from S to S'.

3. Numerical Procedure

We define the new variable t by the transformation

f = 1 (14)
t- 21

This i-iansformation maps the flow domain onto the inside of the unit circle.

The problem in the complex t-plane is illustrated in Fig. 3.

We use the procedure derived by Vanden-Broeck3 to investigate the effect of

surface tension on the shape of fingers in a Hele-Shaw cell (see also Vanden-

5Brueck ). Thus we define a modified problem by replacing (11) by

0 = , *=4'=0. (15)

Here Y is to be found as part of the solution.

We will solve the modified problem defined by (7), (9), (10), (12) and (15)

for all values of F and a. Then we will obtain the solutions of the original

problem by selecting among the solutions of the modified problem those for which

y =0. :'

-6-
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Following Brodetsky 7 we introduce the function n(t) by the relation

T- el = - lo 1+t16)

The conditions (7) and (12) show that R(t) can be expressed as a Taylor

expansion in odd powers of t. Hence

l I i t An (17)Ie. !o n +_ -t2n- 1.

The function (17) satisfies the conditions (7), (10), (12) and (15). The

coefficients An and b have to be determined to satisfy the condition (9) on
iaI

the surface SAS' of the bubble. We use the notation t = re, so that points

on SAS' are given by r = 1, - < a < . Using (3) and (14) we have
2 22

dx() b sin2ae *U)cos W(a) , (18)
da

dy(G) b-ince si ) a
Tb sin2(easin 8o) (19)

do 

where x( (, y(o), () and W(a) denote the values of x, y, T and e on

the free surface SA.

We solve the problem approximately by truncating the infinite series in

(17) after N - I terms. We find N - I coefficients An and the constant

b and y by collocation. Thus we introduce the N mesh points

a 2 I - I,...,N . (20)
I 2N.

Using (17)-(19) and (20) we evaluate T(ai), 8(ak) and clx) in terms of
a=01

the coefficients An and the constants b and Y. Substituting these

expressions into (9) we obtain N algebraic equations for the N + I unknowns

An, b and y.

The last equation is obtained by specifying . .

"y 2 (21)

." we solve this system by Newton method for given values of F and a. Once this

-8-"



system is solved, we obtain the profile of the bubble by following the procedure

described at the end of Section 2. -

4. Solutions Without Surface Tension

We used the scheme presented in Section 3 to compute solutions with a -

(i.e. T = 0). The numerical results were found to be similar to those obtained

by Vanden-Broeck4'6 for the flow past a two-dimensional bubble in a tube. In

particular we found

Y = - F < Fc - 0.9 , (22)2

Y = F F c - 0.9 , (23)

y 0 F > Fc - 0.9 . (24)

As F + the free surfaces collapse to the vertical line y 0 and the

flow reduces to a uniform stream. As F + 0, the free surfaces approach the

horizontal line x = 0 and the problem reduces to the classical Xirchhoff model

for cavitating flow past a flat plate.

Relations (22)-(24) show that all the solutions corresponding to F < Fc

are solutions of the original problem. The solutions for F ) Fc are only

solutions of the modified problem. They are characterized by a discontinuity in

slope at the apex of the bubble.

In Fig. 4 we present values of the dimensionless velocity qA/U at the

apex A of the bubble vs F. The velocity qA is equal to zero for F 4 F
C

and is different from zero for F > FC .

Collins1 performed experiments for two dimensional bubbles rising in a

fluid. He observed that the profile of the bubbles were close to circular

arcs. Using a method due to Davies and Taylor , he derived analytically an

approximate relation between the velocity U at which the bubble rises and the

radius R of the circular arc, namely

-9-
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U 0.5(g R)1/ 2  (25)

In dimensionless variables (25) becomes - "

R 402  (26)"--'

Collins found that (25) was in good agreement with his experimental data. In

addition he measured the angle subtended at the center of the arc of circle and

found the approximate value 105. Therefore the width D of the bubble is

related to the radius R by the simple formula --.

D - 2 sin 52.5 • R 1 .6R . (27)

In dimensionless variables, relations (25) and (27) imply the existence of

a unique flow characterized by

r re - 0.4. (28)

Our numerical results without surface tension do not agree with Collins'

experimental data: we found a solution for all values of F < F whereas

Collins found a unique solution for F F I In the next section we show that

this discrepancy between theory and experiments is removed by taking into

"- account the effect of surface tension.

5. Solutions with Surface Tension

We used the numerical scheme of Section 3 to compute solutions of the

modified problem for various values of F and a.

In Fig. 5 we present values of y vs F for a 40. As F tends to

infinity, Y approaches zero. As F approaches zero, Y oscillates often

around -. Fig. 5 suggests that there exists a countably infinite number of
2

values of F for which Y - j. The solutions corresponding to these values

of F are solutions of the original problem. As a increases, the amplitudes

and the wavelengths of the oscillations in Fig. 5 decrease. These results are

similar to those obtained in Ref. 3 for the flow in a Hele Shaw cell and in Ref.

4 for the flow past a bubble in a tube. By analogy with those previous works we

-11- .
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expect that the discrete set of solutions for which y will reduce to a2

ur-ique solution as a 1 + 0. We shall denote by F the corresponding value of

the Froude number.

In Ref. 4, the value of F was obtained by following solutions with
- ": :.

as a + L (see Fig. 5 in Ref. 4). A similar method was used in

itf. 3.

In the present paper, we shall use a different approach to determine the

value of F *. We first recall that there exists a branch of solutions

characterized by 0 < F < Fc , = /2 and a = 0 (see Section 4). On the

other hand we expect to obtain a unique solution characterized by F = F* and

y = w/2 as a-1 + 0. Keller 9 pointed out that these two facts imply that

F = F is a bifurcation point on the branch of 0 < F < Fc , y = w/2, a- 0.

We can therefore find the value of F by seeking numerically bifurcation

points on the branch of solutions 0 < F < Fc, Y - W/2, a-1 . 0. For this

purpose we use a variant of the scheme of Section 3 in which the problem is

reduced to a system of N + I algebraic equations for the N + I unknowns b,

a-1A n = 1,...,N - 1 to be solved for Y and a given value of F. We

used this scheme to compute the branch of solutions 0 < F < Fc, w - 1/2,

a-1 = 0. The numerical results were found to agree with those of Section 4. In
particular a- 1 0 for N large (for example -I < 10- 3 for N 40

and la-11 < 10- 4 for N = 60).

For each value of F, we computed the value of the determinant of the

Jacobian matrix. We found that it vanishes for F - 0.51. Therefore F- 0.51

is a bifurcation point on the branch of solutions 0 < F < Fc (Keller1 0 ) and

F 0.51.

The profile of the bubble corresponding to F = F and a =- is shown in

Fig. 6. The broken line corresponds to a circular arc of radius R = 4(F*) 2. .
h.'

-13-
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Fig. 6 shows that our theoretical profile is in very good agreement with the

experimental result (26). However, the theoretical value F - 0.51 is larger

than the experimental value Fe - 0.4. This is presumably due to our simplified *

model of the wake and to the difficulty of realizing truly two dimensional flows

experimentally.

..-

-14-

........................................* .. ..o

. . . . . . . . . . -.- .. . . *. . .- %*-*



0

-4
0 $4

A U

41 u
11 0 ,

O4A

0

0 V

II 0

-,4

Jo'



References

1. R. Collins, J. Fluid Nech._22, 763 (1965).

2. J. W. McLean and P. G. Saffmai, J. Fluid Koch. 102. 455 (1981).

3. J.-H. Vanden-Broeck, Phys. Fluids 26, 2033 (1983).

4. J-N.Vandn-Boeck Phs. luid 27 109 (184)

4. J.-t4. Vanden-Broeck, Phys. Fluids27. 100 (1984).

6. J.-N. Vanden-Broeck, Phys. Fluids (in press).

7. S. Brodetaky, Proc. R. Soc. Lond. A102, 542 (1923).

*8. R. M. Davies and G. 1. Taylor, Proc. R. Soc. Lond. A2001 375 (1950).

9. J. B. Keller (private communication).

*10. H. B. Keller, Applications of Bifurcation Theory (Academic, Mew York,

1977), p. 359.

* JMVB:scr



SECURITY CLASSIFICATION OF THIS PAGE (3When Data iefKned
PAGE READ INSTRUCTIONS

REPORT DOCUMENTATION PAGBEFORE COMPLETING FOkW
I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

2921"" .

4. TITLE (nd Subtitle) S. TYPE OF REPORT & PERIOD t,. -

Summary Report - no 61 S .

A FREE STREAMLINE MODEL FOR A RISING BUBBLE reporting period
S. PERFORMING ORG. REPORT d~jt, IF'

7. AUT0RHO( ) a -. CONTRACT OR GRANT NUMdj.E1%. .

Jean-Marc Vanden-Broeck DAAG9-80-C-OL
MCS-8001960

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT P'IOj ,"

Mathematics Research Center, University of AREA&WORK UNIT NUM .-

610 Walnut Street Wisconsin Work Unit Number 2 .
Madison, WIsconsin 53705 Physical Mathena;".

"1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

March 1986
See Item 18 below. IS. NUMBER OF PAGES -

16
14. MONITORING AGENCY 1NAME A AODRIESS(II different from Controlling Office) IS. SECURITY CLASS. (of gh,. ..p.

UNCLASSIFIE1
IS. DECLASSIFICATION, UuwNm,-..

SCHEDULE

16. DISTRIBUTION STATEMENT (of thih Report)

Approved for public release; distribution unlimited.

* 17. DISTRIBUTION STATEMENT (of thle abstract mitered in block 20, if differmit from Report)

18. SUPPLEMENTARY NOTES
U. S. Army Research Office National Scienctp: Fou., .c .,
P. 0. Box 12211 Washingtun, DC 205,., .
Research Triangle Park
North Carolina 27709
19. KEY WORDS (Continue on reve ee ade it neceeary amd Identify by block number)
bubble
surface tension

20. ABSTRACT (Continue on rever@e side if necessar mid identify by block number) ... . .

The motion of a two-dimensional bubble rising at a c-onstant vel "ify iii
an unbounded fluid is solved by series truncation. It is assumed theI._ .s
wake of stagnant liquid extending to infinity below the bubble. BoLh t1IC
effects of gravity g and surface tension T are taken into account
shown that the problem is characterized by a continuum of solutions
and by a discrete set of solutions when T > 0. In addition, a uniq.,_
is obtained in the limit as the surface tension approaches zero. Th,
sponding profile of the bubble is found to be in good agreement with .

DD O 1473 EDITION OF I NOVS IS OBSOLETE UC SI"D"- ~UNCLASSIFIED"-"-
SECURITY CLASSIFICATION OF THIS PAGE .;. ti)

- . . . . . . . . .



~- .'.. ~---

-A

I
I.

6~56

S. I I)
Ii

4 1 (
S.

4


